
GLR-39 

RE-ORDER NO. Lr-963 ' 

DYNAMIC ANALYSIS OF A LITHIUM-BOIUNG 

POTASSIUM REFRACTORY METAL 

RANKINE CYCLE POWER SYSTEM 

FOR THE JET PROPULSION LABORATORY 

(JPL Contract No. 951198) 

Solana Beach 

H .  F.  Poppendiek 
C. M. Sabin 
L. V. Feigenbutz 
W. A. Morton 
D. A.  Connelly 

This work was performed for the Jet Propulsion Ca6ori1w, 
California Institute of Technology, sponsored by the 
National Aeronautics and Space Administration urrder 
Contract N-7-100. 

November 1965 

GEOSCIENCE LIMITED 
La Jolla 

California 



1 

. TABLE OF CONTENTS 

I. INTRODUCTION 

II. CONSIDERATION OF SOME OF THE UNIQUE ASPECTS 
OF LIQUID METAL RANKINE POWER SYSTEMS 4 

III. DISCUSSION OF MODEL SYSTEMS ANALYZED IN THIS REPORT 8 

IV-A. SIMPLIFIED STEADY STATE MODEL FOR POTASSIUM 
CIRCUIT (Model 1) 1s 

N-B. STEADY STATE MODEL 3 FOR POTASSIUM CIRCUIT 21 

IV-C. STEADY STATE ANALYSIS OF AN IDEALIZED BOILER- 
CONDENSER SYSTEM WITH A CONSTANT, UNIFORM HEAT 
ADDITION AND AN UNCHOKED FLOW RESTRICTION 39 

V-A. TRANSIENT ANALYSIS OF A SIMPLE MODEL OF THE JPL 
BOILING POTASSIUM POWER SYSTEM WITH A CHOKED 
NOZZLE (Model 1) 47 

V-B. TRANSIENT ANALYSIS OF A SIMPLE MODEL OF THE JPL 
BOILING POTASSIUM POWER SYSTEM WITH A CHOKED 
NOZZLE AND VARIABLE HEAT TRANSFER CONDUCTANCE 71 

V-C. TRANSIENT HEAT TRANSFER MODEL OF THE JPL BOILER- 
CONDENSER SYSTEM HAVING THERMAL COUPLING 96 

V-D. TRANSIENT ANALYSIS OF A SIMPLE MODEL OF THE JPL 
BOILING POTASSIUM POWER SYSTEM WITH AN UNCHOKED 
NOZZLE (Model 2) 103 

VI. SIMPLIFIED EQUATIONS WHICH DEFINE THE NUCLEAR 
REACTOR (LITHIUM HEATER) AND POWER SYSTEM COMPO- 
NENTS 111 

MI* SYSTEM SIMULATION MODEL AND GOVERNING EQUATIONS 116 



2 

I* INTRODUCTION 

This report contains a number of steady state and transient analyses of 

idealized models of the Jet  Propulsion Laboratory Lithium-Boiling Potassium 

Rankine Cycle Space Power System. 

The actual J P L  power system is quite com2lex and the operator has many 

independent system parameters a t  his control. Dependent upon the method of 

control used, some of these may be: lithium heater power or lithium outlet tem- 

perature, lithium pump power, radiator area,  potassium pump power or potassium 

pump outlet pressure, valve openings, preheater power level or preheater outlet 

temperature, and turboalternator load. In addition to these controllable para- 

meters, there a re  many system constants which were determined at the time the 

system was designed and over which the operator has no control, such a s  insulation 

heat loss coefficients, orifice sizes, component heat capacities, fluid volume ca- 

pacities, bearing lubricant flow rates, rotating machinery inertia and bearing and 

windage losses, and thermal and mechanical stress limitations. A power system 

with a nuclear reactor energy source would have in addition a temperature coeffi- 

cient which was either positive or negative, a heat capacity, and more thermal and 

mechanical stress limitations. 

System variables of interest over which the operator has no direct control 

may be lithium temperature in  heater and boiler; potassium temperature in boiler, 

condenser and pump; turboalternator bearing temperature; potassium flow rate; 

turboalternator speed and power output; and others. The operator can only adjust 

his "parameters to bring these system variables to their proper values. 

A number of the processes which take place in a boiling liquid metal system 

a re  only approximately understood. For example, the heat and momentum transfer 

processes in the boiler a re  strongly affected by relatively subtle geometrical varia- 

tions, so that with present knowledge, the prediction of the boiler performance may 

only be approximated. Similarly, the two phase flow through the orifice and turbine 

nozzle can only be estimated; It is clearly impossible to analyze precisely, or even 



to wr i te  the differential equations for the transient or steady state description 

of such a system in its entirety. Suitable idealizations must be made to allow 

its study by analysis. The analyses presented in this report a r e  based on such 

idealizations which yield solutions which adequately represent the main features of 

the loop under construction. 

Because of the extensive notation required in the various analyses presented, 

no general nomenclature section has been prepared. Instead, a separate notation 

is included with each analysis. 

This report is submitted in fulfillment of the tasks outlined in JPL Contract 

No. 951198. In excess of 700 manhours were expended on these studies. 
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II. CONSIDERATION OF SOME O F  THE UNIQUE ASPECTS 

OF LIQUID METAL RANKINE POWER SYSTEMS 

The Jet Propulsion Laboratory Lithium, Boiling Potassium System is a 

Rankine power cycle with two flow circuits. The components listed in the direc- 

tion of flow, a r e  a s  follows. The principal lithium circuit consists of an electrical 

heater, centrifugal pump, and heat exchanger (the heat exchanger being an outside 

jacket on the potassium boiler tube). The principal potassium circuit consists of 

an electrical resistance preheater; a boiler tube in  which the power is transferred 

from the lithium circuit; an orifice meter which may also be used a s  a flow re- 

striction; the turboalternator; the condenser and subcooler; an electromagnetic 

pump; and a flow throttling valve near the pump outlet. Both of these circuits also 

contain hot traps, pressure transducers, electromagnetic flowmeters, and filling 

and emptying lines. In addition, the potassium circuit has a bypass line which can 

be used in place of the turboalternator, and a turboalternator bearing lubrication 

circuit. The condenser-subcooler, which rejects heat by radiation, has control- 

lable shutters to vary the effective radiating view factor. The electrical lithium 

heater may be programmed to simulate a suitable nuclear reactor. 

Ther a r e  several modes of operation possible with this system. The 

turbine may be removed from the circuit by valving the potassium through the by- 

pass, so that the primary flow restriction becomes the orifice flowrneter'at the 

outlet of the boiler. The turbine nozzle or  the orifice meter, whichever is the 

major restriction, may be operated either unchoked or choked. Principal controlled 

quantities a s  listed in the introduction, are lithium heater power, lithium pump 

power, potassium preheater power, potassium pump power, alternator load, radia- 

. 

tor shutter position, and several valve positions. Automatic controls are available 

for some of these quantities, so that the lithium heater outlet temperature, the 

potassium preheater outlet temperature, and the pump outlet pressure may be 

maintained constant, a t  least in a time-averaged sense. The settling time of all 

of the controllers is short compared to the thermal time constants of the system, 
) .  
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but rapid changes due to, for  example, sudden boiling of superheated potassium 

liquid would of course not be followed accurately by the controllers. 

The differences between this liquid metal power system and a conventional 

steam power plant are significant. The most striking difference is that in  the liquid 

metal boiler there is no liquid hold-up. A t  any instant the flow into the boiler and 

the flow out of the boiler must be very nearly equal. One cannot, for example, 

close a valve on the boiler outlet, generate a vapor supply in the boiler, and then 

start the vapor flow at some desired value. This is the usual starting procedure 

for a steam power plant. The system with no vapor supply in the boiler must neces- 

sarily be started with less  than critical flow in the turbine nozzles, and pass through 

critical in a continuous manner. In the subcritical region, the condenser and boiler 

conditions are coupled across the turbine nozzle, so that the boiler pressure and 

temperature may not be controlled independent of the condenser. In addition, i n  

a system with very small fluid storage capacity in the boiler, minor variations in 

the rate of vapor generation, or feed pump flow rate, must be felt throughout the 

system even when the nozzles a re  choked, since boiler and condenser are coupled 

through the pump. 

Another striking difference between the boiler of a Rankine cycle steam 

plant and a liquid metal heat exchanger-boiler system such as the JPL system is 

I in the magnitude of the fluid to fluid temperature difference in the boiler and in the 

nature of the controlling heat transfer resistance in the boiler. In the conventional 

steam power plant the controlling resistance is on the hot gas side so that minor 

variations in  the resistance between the wa l l  and boiling fluid do not have much effect 

on the heat transfer rate. In the liquid metal to boiling liquid metal heat exchanger 

the controlling resistance to heat transfer is usually on the boiling side, so that 

variations in  boiler pressure level, local vapor quality, and flow rate will likely 

have a much larger  effect upon the power transfer in the boiler. The fluid to fluid ' 

temperature differences in the liquid metal heat exchanger are in the order  of 100°F, 

while those in the boiling portion of a steam boiler are usually an  order  of magnitude 
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higher. The small temperature difference in the liquid metal system increases 

the sensitivity of the boiler heat flux to minor variations in fluid temperatures. 
, 

1 

Another difference between the steam power plant and the liquid metal 

system which increases the control problems of the latter is the low pressure 

difference between boiler and condenser, an order of magnitude lower than that 

of the steam power plant. The fluid mass flow rate is fa r  more sensitive to 

pressure variations in the condenser and boiler than in  the steam power plant 

since these variations represent a greater proportionate change. 

The condenser also plays its role i n  the control problems of the liquid 

metal system. The steam power plant condenser has a very low absolute pressure 

so that large variations in the condensing power load and condenser temperature 

difference have only a minor effect upon the pressure level of the system. The 

same proportionate variation in condenser power in  the space power system, which 

operates a t  significant temperature (and pressure) levels due to its necessity to re- 

ject heat by radiation, causes a much larger change in system pressure level. 

Liquid metals frequently superheat to significant temperature levels above 

their normal boiling point before changing phase, even in flow systems with con- 

siderable agitation. The change of phase, when it occurs is accompanied by violent 

pressure fluctuations due to the rapid acceleration of the unvaporized component. 

Such behavior is never encountered in practical water boiling systems. If super- 

heating occurs in the liquid metal system, it will cause significant instantaneous 

variations in boiler exit quality, liquid flow rate, pressure level, etc, which will 

affect all components of the system. 

There a r e  a number of other differences between the liquid metal space 

power system and the conventional steam power plant; those listed are the major 

ones. 

It is clear that some significant simplifications and approximations must be 

made to idealize the liquid metal power system in order to perform any analysis. 

Idealization of complicated power systems yield solutions which can be used to aid 

in the design and interpretation of power system experiments. Further, a comparison 



7 * .  

of the theory with experimental behavior will make it possible to develop better 

models for  predicting the performance of future power systems. A large portion 

of the work reported here was devoted to the development and evaluation of a suit- 

able model for analysis. 

In some portions of the analyses that are presented, a number of different 

processes were considered which lead to different mechanism functions ; in others 

a somewhat arbitrary but reasonable choice of one function was chosen. One would 

not expect such arbitrary choices (for example, constant pump pressure rise, in- 

dependent of flow rate) to have a major effect upon the operating characteristics of 
the system. ! 
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III. DISCUSSION OF MODEL SYSTEMS ANALYZED IN THIS REPORT 

The procedure used to evolve a working model for the potassium circuit 

transients was to choose a simple model from experience, analyze it by steady 

state perturbations around the design point, then repeat the process by a more 

complex model embodying some of the features neglected initially. Comparison 

of the results determined whether the effects neglected in  the simpler model were 

in fact, negligible. The model thus tested, was  then subjected to transient 

analysis. An example of this process is the first two steady state analyses of 

section IV, which were called Model 1 and Model 3. It was concluded, after the 

comparison, that the additional effects included in Model 3, namely subcooling, 

preheating, gaseous friction pressure drop, and liquid level variation, did not 

change the performance of the system enough to warrant the increased mathema- 

tical complexity. 

Model 2 is a system identical to that of Model 1 except that the turbine 

nozzle o r  orifice (whichever is providing the major gaseous pressure drop) is 

considered to be unchoked. The third analysis of section IV is a steady state ana- 

lysis of the unchoked system including some additional effects in order to test their 

importance. This work also justified the omission of the additional effects included 

in  the test analysis. 

The presentation of results from such analyses in generalized form is quite 

difficult. There is an  old saying that a function of one variable can be represented 

by a line, a function of two variables by a group of lines, a function of three variables 

by a volume of pages, and a function of four variables by a library. In some of these 

simple models the results are functions of five independent parameters. Since 

in general the independent parameters represent functions actually controllable by 

the system operator, a great variety of operating conditions are possible. The 

actual ones chosen for this re&mt are  some which are, in the opinons of the authors, 

likely to occur. Many other operating conditions are just as likely to occur as those 

chosen. 



9 

Al l  of the model system analyses reported here have certain features in 

common, and all pertain to a particular potassium circuit configuration consisting 

of: l 

I 

a) boiler 

b) throttling nozzle 
~ 

c) radiator 

d) P-P. 
In the analyses which took the lithium circuit into consideration it was  treated 

as a uniform temperature mass,  which can be mathematically replaced by a boiler 

with a larger heat capacity. Equation 1 of section V-C and Equation 2 of section 

V-A , two analyses which exhibit this different point of view, are identical in form; 

only the values of the heat capacity in the equation are different. A table of transit 

lines for  the lithium circuit a t  design flow rate is presented in Table 1. It may be 

seen that the idealization of uniform temperature of the lithium circuit or its equi- 

valent, infinite circulation rate, is not an unreasonable one. The controlling 

thermal time constants of the potassium circuit are over an order of magnitude 

longer than the time for the lithium to flow completely around its circuit. 

Other idealizations common to all analyses are 

1) The turbine power is negligible compared to system total 

power. 

2) The vapor quality at exit of boiler and entrance to 

condenser is always less than unity; i.e. pressure is 

always a function of temperature in  the mixed phase 

region. 

3) There a re  no heat losses from system except in 

radiator. 

4) The condensing and wall resistances are neglig- 

ible compared to radiation resistance. 

5) The lithium and potassium temperatures in boiler 

areuniform. . 
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6) The heat transfer conductance in  the boiler is uniform. 

7) The condensation process takes place at constant 

pressure.  

8) The pump is isentropic. 

9) Thermal delay times due to finite liquid flow velocities 

in  the potassium circuit are negligible, 

Other idealizations, specific to individual analyses a r e  listed in Table 2. 

Controlled parameters considered in all analyses were: lithium o r  boiler 

power input, radiator area (or view factor), and potassium pump pressure rise. 

Specific analyses also include as additional parameters preheater outlet temperature 

and liquid friction pressure drop. 

In none of the analyses was  the orifice specifically considered to be the con- 

trolling pressure drop. In order to obtain quantitative results for'the orifice case, 

it is merely necessary to change the constant in the pressure drop equation. 

The models which do not specifically include subcooling and preheating re- 

quire that the unstated preheat be to saturation. The preheat power and output 

temperature a r e  therefore both variable, and dependent upon the existing boiler in- 

let conditions. This simplification has  a minor effect, a s  may be seen by compa- 

rison of the results of section IV-A and IV-B. 

The assumption of constant latent heat of vaporization means that the Mollier 

diagram is distorted somewhat.. Computed and actual qualities will disagree, but 

the energy flowing from the boiler to condenser is unaltered by this simplification. 

The idealization that thermal delay times due to finite liquid flow velocities 

in  the potassium circuit a r e  negligible is not a particularly good one. The transit 

time for  the potassium from the condenser outlet to the boiler inlet is 40 seconds. 

There is however no simple way to account for this delay in the analysis, and since 

the preheat power is a small portion of the total, variations in the preheat power 

which lag the principal power variations by a small amount should not affect the 

characteristics of the system significantly. Transit times through various portions 
I 

of the potassium circuit are given in Table 3. ~ 

I 



Table 1. 

LITHIUM CIRCUIT DESIGN LIQUID 

FLOW TRANSIT TIMES 

Heater inlet to heater outlet 

Heater outlet to bottom of level indicator 

Bottom of level indicator to pump 

Pump to inlet of boiler 

Boiler inlet to boiler outlet 

Boiler outlet to heater inlet 

Total transit time around lithium circuit 

2.9 8ec 

.7 sec 

.2 sec 

1.8 8ec 

.4 sec 

.7 sec 

6.7 8ec 

11 
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POTASSIUM CIRCUIT DESIGN 

LIQUID FLOW TRANSIT TIMES 

Condenser outlet "a pump inlet 

Through pump, inlet to outlet 

- 

pump outlet to trap inlet 

Trap inlet to trap outlet 

Trap outlet to boiler inlet 

8 . 8  sec 

1.1 sec 

1 .9  sec 

27.6 sec 

.8 sec 

Total time from condenser to boiler 40.2 sec 
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IV-A. SIMPLIFIED STEADY STATE MODEL 

FOR POTASSIUM CIRCUIT (Model 1) 

A simplified steady state model of the potassium circuit was  analyzed at off 

design conditions in order to realize the variation in various control parameters. 

The model consists of a boiler, a choked nozzle, a condenser and a pump. There 

is no subcooling or  superheating; the potassium is in a saturated condition through- 

out the loop. There a r e  no heat losses, therefore, the heat input into the boiler 

equals the energy radiated by the condenser. The heat transfer coefficient for the 

boiler is taken a s  a mean value which is constant. 

. 

The equations which represent the idealized simple model are: 

1. Boiler, 

where hA, a constant which is evaluated at design condition 

TLi' lithium temperature in boiler 

TI, potassium temperature in boiler 

energy input into the boiler 
qB' 

2. Choked Nozzle (Fliegner ' a  formula) 

where Wg, gas flow rate into choked nozzle from boiler and dependent only upon 

boiler conditions 

P1, potassium vapor pressure in boiler 

C , a constant 
2 

3. Condenser . 4 
= C  T 

qc 1 2 

where q energy - radiated by.condenser which is equal to q C' B 

cl, a function of radiator area 
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, potassium temperature in condenser 
T2 

4. Pump 

- Al? = P1 

where D, pressure drop across  pump 

, potassium vapor pressure in condenser 
p2 

5 .  Gas Flow Rate in Boiler 

wg = wT(&T) =? 
where W total flow rate T' 

h ,heat of vaporization 
V 

Given that q - we have the following system of equations: 
C - 'B' 

(4) 

(5) 

Normalizing equation (6) by the design values (Wg),, (Pl)d, (Cl)d, (T2)d, and @v),, 

we have . 
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(Pz)d = 24.5 psi 

From the above set  of design conditions, we have 

= 1024 Btu/hr"F 
' hdAd 

4 
' (C ) (T ) = 102,400 Btu/hr I d  2 d 

(Wg), = 136 lb/hr 

112 
= 59 1b"R /hr psi 

('2)d 

Substituting the design values (8) and (9) into equation ('7) gives 

The system of equation (10) was analyzed for various values of the gas flow rate, wg, 

and the radiation area,  E 
2, and3.  

The results of the analysis a r e  presented in Figures 1,  
1' 

The criterion that the lithium temperature must not exceed 2100°F sets  an upper 

limit on the gas flow rate, as shown in Figure 1, at 1.25 times the design value o r  

170 lb/hr. The bounds on the radiation area, and the pump pressure, s, are 

shown more clearly in Figure 2.  Here we see that the lithium temperature requires 

the upper limit on 

as the condenser radiation area decreases to a value of 70% o r  less of the design area, 

the condenser temperature becomes an uncontrollable function of the condenser radia- 

tion area.  This condition results because a t  the lower condenser radiation areas, the 

1' 

to decrease with decreasing condenser radiation area. Also, 
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condenser temperature becomes equal to and exceeds the boiler temperature. 
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AP=- - AP 
*'d 

Tzd = 1960-R 

A$= 87.5 PSI 

T2 =CONDENSER TEMPERATURE 

1 I I I I I I I I I I 1 I -  I I I 
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.. - 
. .  c, x 100 . . 

Figure 2 .  JPL potassium circuit - steady state model 



u II 

IP _' IC 

I 

. .  

20 

L -* 



IV-B. STEADY STATE MODEL 3 FOR POTASSIUM CIRCUIT , 

Introduction 

Steady state model III for  the potassium circuit was  analyzed at off design 

conditions in  order to realize the variation in various control parameters. Model 

III is a refined version of model I, in  that model III includes subcooling, preheating, 

liquid levels and frictional pressure drops. To review, model III is for a choked 

turbine nozzle, assumes no heat losses and assumes a constant heat transfer coef- 

ficient. In addition, the preheat temperature is held constant; the reason for doing 

so will be explained in the discussion. 
', 
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Discuss ion 

In formulating m o d  I11 a difficulty arose in selecting a quantity that cou-3 

22 

be held constant (this condition must be imposed since there is one more unknown 

than there are equations). Fixing the energy input into the preheater and heat ex- 

changer confined the calculations to a narrow range of control parameters which 

does not appear to be a natural constraint for the potassium circuit. Fixing the 

lithium temperature gave similar problems. However, a constant preheat tempera- 

ture did not limit the calculations in any way over a wide range of flow conditions. 

Therefore, it appears that the preheat temperature is a natural quantity to hold 

constant in a liquid metal circuit. 

The minimum number of parameters that have to be specified in order  to 

solve the problem are four. In the mechanics of solving-the problem, the solution 

was obtained much easier when the following parameters were specified: 1) the gas 

flow rate into the choked nozzle, 2) the preheat temperature, 3) the liquid flow rate, 

4) the condenser shutter position. However, in presenting the results, the pressure 

head is specified instead of the gas flow rate into the choked nozzle. The calcula- 

tions were performed for a limited range of the four parameters since to do other- 

wise would require anelectronic computer. The values assigned to the four para- 

meters  for  which the results are presented are: 1) values of liquid flow rate which 

range from 0.8 to 1.2 times the design flow rate, 2) a range of condenser shutter 

positions which give a radiating area equal to 0.7 to 1.5 times the design radiating 

area, 3) two values of the pump head which are the design pressure head and 0.9 

t imes the design pressure head, and 4) a preheat temperature equal to 1700'F. 

The circuit diagram used in model III is shown in Figure 1. The lengths 

and areas used in making the calculations are: 

= heat exchanger length = 2.89 f t  
e '76 

= condenser height .= 3.02 A I23 
, 
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2 
= radiator area (3/4 of condenser area) = 9.41 ft 

= heat exchanger area = 0.378 ft  2 
6 

The values of the constants used in making the calculations are (refer to the section4 

for a definition of the constants): 

= 64.23 lb("R)1/2 / hr  (psi) 

= 8.7985 x 10 

-5 
= 3.56 x 10 psi/(lb/hrt 

c1 

c2 

fL  

-10 Btu/hr ft2 O R 4  

-3 
f + f = 1.504 x 10 psi  / ( lb /hr t  7 1  

2 

2 

h = 4660 B t d h r  f t  OF 

h7 = 2583 B t d h r  f t  "F 
L 

C = 0.208 Btu/lb " F  
P 

L =  40.75 lb/f? 

The design values for model IJI are: 

T2 = 1500°F 

Tq = 1194°F . 

T7 = 1922°F 

T8 = 2022°F 

= 4.61 kilowatts q5 

q6 = 2 kilowatts 

q, = 28 kilowatts 

1 = 0.81 inches 6 

l3 = 4 inches 

AP = 96.94 psi 

WL = 150 lb/hr 

L 

\ 
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The results are presented in Figures 2 through 10. The results of model 

III and model I are compared in Figure 2. From this we see that refining model 

I did not significantly change the response of the condenser temperature to a chang- 
I 

1 ing radiating area. The same held t rue for the boiler and lithium temperatures. 

Therefore, model I although being highly simplified, contains the main features for 
~ 

describing the performance of a liquid metal circuit. Figures 3 through 10 present 

the variation of the various quantities versus the radiation area and are for  the 

most part  self-explanatory. The cut-off for  choked flow is given in each figure for 

a specific heat ratio of 1.67 and only serves to locate the general area for turbine 

choking. Since the choking condition is calculated from ideal gas equations which 

do not hold, pursuing the precise location of choking would be of no avail. The 

liquid level in the condenser is not shown since it did not vary by more than 3% from 

the design level. The variation in the liquid level in the heat exchanger, as shown 

in Figure 7, is very slight, being only from 1/2 to 1 inch for a large variation in 

radiating area. The variation in the liquid flow rate and radiating area has a con- 

siderable effect on the preheat energy requirement (Figure 9). The selection of the 

preheat temperature level will have a significant effect on the preheat energy 

requirement. I 
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E quatiom 

The following is a summation of the equations used to calculate the per- 

formance of the potassium circuit. The equations conform to the assumptions: 

1. No heat additions o r  losses except in the heat exchanger, 

preheater and radiator. 

2. The lithium temperature is constant throughout the length 

of the heat exchanger. 

3. Only the gas phase effects the nozzle and orifice pressure drop. 

4. The radiation coefficient is constant. 

5 .  The condensing pressure drop is negligible. 

6. The boiling temperature is uniform throughout the boiling 

length. 

7 .  The pressure drop from the boiler to the nozzle can be approxi- 

mated from the gas flow at the nozzle. 

8. The boiler, nozzle and condenser are always in the mixed phase 

region. 

9. The specific heat of the liquid is constant. 

.. 

10. The pump is isentropic. 

The equations a r e  solved in the following order with the condition that the gas flow 

ra te  Wgl, liquid flow rate W 

C are specified. 

the preheat temperature T and the shutter position L’ 5 

2 
1. The pressure P and temperature T at the choked nozzle are given by 1 1 

Equations (1) and (2). 

p1 
81 =“1- 

TI = function of P (vapor pressure curve), 1 



7' 
givenH a n d T  T 

7 X, = function of H and T T 

7.  The energy into the boiler is given by Equation (8), 

% = X , W  h L v  

where h = heat of vaporization 
V 

8. The lithium temperature T is obtained from the transcendental 
8 

Equation (9). 

34 

2. The pressure in the boiler, P is obtained from Equation (3). 7' 

P7 = P + (f7 + fl) w 2 

81 1 

where (f + f ) is the friction factor. 7 1  

3. The temperature in the boiler, T is obtained from the vapor pressure 7' 
curve e 

T, = functionof P 7 (4) 

4. ' The quality at the choked nozzle, X is given by Equation (5)D 
1' 
W 
gl 

wL 
= -  

x1 
(5) 

5 .  The total enthalpy, H in the mixed phase region is obtained from the 

1' 

T' 
Mollier diagram for given X and T 1 

1 
= function of X and T 

*T 1 

6. The quality in the boiler, X is obtained from the Mollier diagram for 
7 '  

where h = boiler heat transfer coefficient 

= liquid heat transfer coefficient 
7 

hL 
C = specific heat P 
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9.  The heat exchanger preheat area, A is given by Equation (lo), 
6' 

R 
I - 

*6 = A76 h7 (T8 - T7) 
10. The heat exchanger preheat length, P is given by Equation ( l l ) ,  

6' 

- 
'6 .- '76 

11. The condenser temperature, 

(2) 
T , is obtained from the transcendental 

2 
Equation (12) with the help of the Mollier diagram, 

4 - x2 wL hv (12) 

\ 

c2 T2 - 

where C = is a collection of radiation constants times the shutter radiating area - 2 

12. The pump temperature, T is given by Equation (13), 
4' 

where the liquid level in the condenser, 

this quantity varied no more than 3% for a wide range of flow conditions. 

is taken constant (A = constant) since 
3 

13. The preheat energy input, q , is given by Equation (14), 5 

14. The pressure across the pump o r  pump head is given by Equation (15), 

. . 



where p = average density of the liquid L 

5 = liquid friction factor 

P = condenser pressure which is obtained from the vapor pressure 
2 

I 

curve 

I 



Nomenclature 

A 

c1 

c2 

f L  

h7 

hL 

HT 

C 
P 

f7+fl 

V 
h 

P 

P 

Al? 

T 

W 

W 

X 

g 

L 

pL 

\ area 

defined by Equation (1) 

radiation constants times radiating area 

constant specific heat 

liquid friction factor 

combined friction factor for station 7 and 1 

boiler heat transfer coefficient 

liquid heat transfer coefficient 

heat of vaporization 

total enthalpy 

length 

pressure 

pressure rise across  pump 

energy flow rate 

temperature 

gas flow rate 

liquid flow rate 

quality . 

density of liquid 

Subscripts 

1 entrance to choked nozzle 

2 condensation section of condenser 
\ 

3 section of condenser filled with liquid 



4 pump section 

5 preheater 

6 preheat section of boiler 

7 boiling section of boiler 

23 condenser 

76 heat exchanger 

= .  

38 
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IV-C. STEADY STATE ANALYSIS OF AN IDEALIZED BOILER-CONDENSER 

SYSTEM WITH A CONSTANT, UNIFORM HEAT ADDITION 

AND AN UNCHOKED FLOW RESTRICTION 

Introduction 

A steady state analysis was made for an idealized boiler-condenser system 

in which heat was added to the boiler in a uniform manner with length. Further, 

the vapor flow through the flow restriction was postulated to be subsonic or un- 

choked. Also the pump heat was  presumed to be a constant value. Preheating, 

boiling, condensation, and subcooling processes a re  included i n  the model. Sche- 

matic system and temperature diagrams are  shown in Figure 1. 
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I 

The heat and momentum transfer equations which define the idealized 

system are presented below together with some qualifying postulates and con- 

ditions. 

2 + 69f1 = K (x W) % O B  

note: liquid and vapor pressure losses 

and acceleration pressure losses are 

neglected 

note: a. linearized vapor pressure is 

postulated, i.e. p = a t 

- t ) + x  L ]  
p B B  I 

note: no heat is transferred from the pump I -  

or its entrance and discharge ducts 

1 q = w[cp (tc - t )  + x L P c c  I 
(4) 

. 

' note: radiation transfer from the condenser 

is expressed in terms of the first power tem- 

perature equation with a variable conductance, 

h 
1 

r 



Equations (1) to (7) represent a system of seven equations in seven unknowns (6, x e 

x W, tC, tB, and t ). The uniform heat addition to the boiler, q, the pumpc’ 

pressure delivered, Ap , and the system geometry are given. 

B 

C’ P 

P 
The method of solution was as follows: 

a) From Equations (1) and (6) obtain‘b and x W. B 

b) From Equation (3) obtain W c (tB - tp). 
p1 
- tc. B c) From Equation (2) obtain t 

d) For  a trial t calculate t from Equation (5). 

e) From t - t obtaint  

P C 

B* B C 

f )  F r o m W c  - t ) obtain W. 

g) From Equation (7) calculate t and repeat 
P 

steps d), e), f )  (i.e. iterate). 

h) F r o m x  W obtain . 
B “B 

i) From Equations (3) and (4) obtain x c‘ 

Two Specific Solutions 

It was desired to establish the changes in  system variables as change in one 

of the system parameters occurred. For  example, the differences in the system 

variables were  calculated for  a 10% change in the radiator shutter opening (i.e. h - 1 
2 2 was changed from 7.75 B t d h r  f t  ?F to 7.0 Btu/hr f t  ) for the following system 

, 

,-  c = 0.21 B t d l b  OF 
p f 
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3 
W = 39 lb/ft 

Ap = 12,600 lb/ft2 

a = 31.7 lb/ft "F 

I 

P 
2 

LB = 754 Btdlb  

Lc = 822 B w l b  

A = 9.4ft2 r 

p, = 3 . 1 f t  
2' AB = 0.38 ft 

z = 3 . 0 f t  1 

z = 0.33 ft 
0 

h =  
r Ar(tc-tJ 

too = 200'F 

K = 1.5  hr2/lb ft2 
0 

2 The results for h = 7 . 7 5  Btu/hr ft OF are: r 

x W = 92 lb/hr B 

W =' 263 lb/hr 

x = 0.35 

x = 0.52 

B 

C 

6 = -0.63ft 

tc = 1628°F 

t = 2028°F 

t = 1437°F 

B )  

P 

t , 
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2 The results for h = 7 . 0  Btdhr ft "F are: r 

B x W = 92 lb/hr 

W = 263 lb/hr 

x = 0.35 

= 0.52 

6 = - 0.63 ft 

t = 1763 "F 
C 

= 2163 "F 

t = 1573 OF 

B 

-xC 

tB 

P 
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Nomenclature 

AB 

r A 

a 

C 

pP 

r h 

K 
0 

LB 

LC 

pC 

tB 

tC 

9 

t 

t 

W 

1 

B 

C 

P 

00 

W 

X 

X 

z 
0 

heat transfer area of boiler 

heat transfer area of radiator or condenser 

constant in linearized vapor pressure equation, p = at 

heat capacity of liquid coolant 

radiation heat transfer conductance of radiator 

flow rate coefficient of unchoked flow constriction 

latent heat of vaporization in  boiler 

latent heat of vaporization in  condenser 

perimeter of the radiation area of the radiator 

uniform and constant heat addition to boiler 

mean or saturation temperature of the working fluid in the boiler 

saturation temperature of the condensate in the condenser 

temperature of the subcooled liquid in  the pump 

mean radiant temperature of the surroundings 

total coolant flow rate 

weight density of the liquid coolant 

vapor quality at exit of boiler 

vapor quality at entrance of condenser 

liquid level in the condenser 
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elevation of top of boiler and condenser 

constant pump pressure rise developed 

deflection of liquid lievel in boiler (see Figure 1) 

1 2 

&P 
6 
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V-A. TRANSIENT ANALYSIS OF A SIMPLE MODEL OF THE JPL  BOILING 

POTASSIUM POWER SYSTEM WITH A CHOKED NOZZLE (Model 1) 

This analysis describes a simple model of the J P L  Boiling Potassium 

Power System, operating in the region in  which the turbine nozzle (or flow orifice 

in the case in which the turbine bypass is opened) is choked. Under choking con- 

ditions the nozzle flow is dependent upon the upstream conditions only. The model 

cycle is made up of four thermodynamic processes, which are: 1) constant pressure 

boiling to a quality less than unity; 2) constant enthalpy throttling to the condenser 

pressure;  3) constant pressure condensation; isentropic pressure rise across  the 

'. 
Pump* 

To simplify the analysis the following idealizations have been made: 

1) The nozzle is choked, and its pressure drop depends 

only on the gaseous component of the flow. 

2) Subcooling in the condenser and preheating in the boiler 

are negligible. 

3) The pump pressure r i se  is constant. 

4) The power removed by the turbine is negligible. Thus 

the two circuits containing either the turboalternator 

o r  the bypass line are identical, except in the value 

of nozzle discharge coefficient used. 

5) Heat losses and additions are confined to the condenser 

and lithium heater respectively. 

6) There is significant thermal energy storage capacity only 

in the lithium loop and condenser. 

7) There is no significant gas storage anywhere in the system. . 

The gas generation rate in the boiler equals the gas conden- 

sation rate in the condenser at any instant. 
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8) The lithium circuit is considered to be a heat storage 

reservoir with a uniform temperature and an electrical 

input. The uniform lithium temperature is equivalent , 

to an assumption that the circulation rate is infinite. 

9) The boiler is idealized as a heat exchanger with a 

constant mean heat transfer coefficient. 

Other approximations, idealizations and assumptions will be made as they are 

required. 

An energy balance on the condenser yields 

where the condenser temperature is assumed uniform at any instant,fluid to wall 

temperature drop has been neglected, and the inlet fluid is always considered to 

be in the mixed phase. 

An energy balance on the lithium circuieboiler assembly yields 

an energy balance on the boiler yields 

w h = h A ( T u - T 1 )  
8; fg 

The properties of the turbine nozzle a r e  such that 

p1 w =c l -  
1 g & 

The pump equation is 

&P 
L' = constant = 

pout - pin 

(4) 

(5) 



The liquid flow rate governing equation is 

I 
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L 2 dv 

+ cfwL p2 + 4 p  - P1 + ML;IT- 
- 

where the approximation is made that all of the gaseous pressure drop is in the tur- 

bine nozzle, all of the mass  is in the liquid phase, compressibility effects are neg- 

ligible, and changes in liquid elevation are  negligible. 

It has been shown previously (see Reference 1) that for the particular power 

system considered here,  the flow transients have declined to the 1% level in the order  

of 0.1 seconds, and since it will be seen that all other system time constants are 

several orders  of magnitude larger than this, flow accommodation will be assumed 

instantaneous, so that 

2 
P 2 + c p p = P  1 + c w  f L  

or 
2 

dpp = dPn + c w f L  
-. where Lp denotes p - p2, the nozzle pressure drop. 

n 1 
The design gas flow rate is given by four expressions, which are compat- 

ible with the idealizations. These expressions are: 

4 (8) 
'lPld - hA ( 

1 h 
2 

- Tld) = '2dT2d 'ed 
h 

fl3 fg 
TLid 

- w =  
f g - gd 

.p A 

'd 

where the subscript d denotes the design condition. The governing equations may be 

normalized on the design conditions. In normalized form, they are: 

Lithium circuit - 

where 
- TLi TLi = - 

T l d  



Boiler - 

g ATd 

where 
W 

Nozzle - 

where 

Condenser - 

where 

- . p1 

=1 
w g = - F  - 

- p1 =- 
p1 'ld 

- 4 @2 w = c T' +- 
g 2 2  d€ 

50 - _  . .  

- c2 C2 - - - to allow for changes in condenser 

~ '2d shutter position, 



and 

C 
C 

'2d '2d 

7 '= 
2 3 

An analytical expression for the vapor pressure - temperature relation- 

ship is required to solve this system of equations. An exponential form has been 

chosen, with both the temperature and temperature normalized on the design con- 

ditions, to be compatible with the other relationships. 

Two relationships are thus required, one for the boiler, and one for  the 

condenser. 

Tld 

e 
--(TI - 

TA 

Boiler - 
(13) 

where 

TA = 315°F 

Tld = 2360"R 

Condenser - 

where 

TB = 220°F 

TZd ='1960"R .. 
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In order to solve this system analytically it i s  necessary to linearize the boiler 

vapor pressure relationship. To the first order in the (small) quantity (T - 1). 1 

to simplify the notation, let p - 1) = x. Then in linearized form the nozzle relation- 1 
ehip is 

Equate expressions (10) and (15) to eliminate W and solve for x 
g' 

m 

Id 

md 
I - -  qi - '1) 

Introduce some additional simplifying notation 

then 

- -  - 8  
Tld . 

md 
< 

_ -  

1 - By 
x =  

B 

2 Y - B - r  
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In the same notation, the lithium circuit equation is 

* + y - x = Q  dl 

'e 

hAT Id 

where 
Q =  

In this equation, x can be replaced to yield a differential equation for  y. The re- 

sulting equation is . 

One of the terms in this equation is of the order of 2%, and will be neglected. The 

reasoning is as follows: A t  the design point, 

md 100°F 1 - y =-= -- 
2360"R 23.6 Tld  

then ' 

1 - - 1 
S 1 s + r - -y '  23.6 + 7.48 - - 
2 2 

1/2 is neglected with respect to 31. The equation is then approximately 

1 y = Q - -  r a +  di  s + r  s + r  

The initial condition: is 

In order  that the system start a 

Q = constant for  f > o 

the design condition. 
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The solution, assuming in impulsive change of the electrical input Q, at t = 0, is 

where y is the design condition, and y is the final value of y .a t  t-, o. , given by 
d f 

- (r + 8 ) Q  - 1 
Yf - r 

This L~ ines the lithium temperature as a function of tim'e. 

Notice that the time constant for the lithium circuit-boiler-nozzle combi- 

nation is considerably modified from the lithium circuit-boiler time constant T = 

C /hA, and is now [ (r + s)/r)] r , where (r + s)/r = 4.16. The temperature of the 

potassium in the boiler may now be written 

1 

. -  .- - _ -  - Li 1 

where 

and 

To t h  

Xf (1 - 2) 
x =  

xf -? 1 +-e  2 

N r -  
t =  t r + a  

first order,  the boiler pressure is as before 

- 
p1 = + rx 

The gas flow rate through the nozzle is, to the f i r s t  order  
h 

(23). 
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where 
1 + r x  

1 + - x  

f 
1 
2 f  

- - 
wgf - 

or 

The condenser, which under the assumptions can affect the boiler only through the 

pressure at the inlet of the pump and the corresponding liquid flow rate, has the 

non-linear equation 
I 

There are two time bases in th i s  equation, but they have a common zero and are 

linearly related, so one can write 

7 r + s  1 .where  k = - - r T = k y  

then 

Again allow only small excursions in T 

The condenser pressure excursions a r e  some eight times larger than the temperature 

excursions, so the condenser pressure expression is not linearized. 

so that this equation may be linearized. 2’ 

In linear form, Equation (27) becomes 

ry - dz + 4 k  E 2 z  = kV7 - k c 2  - k ( S @  - l ) e  -t 
dr gf 

where 
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= ziD The initial condition need not be the design point, so at t < 0 

= e2i. Since e is a function of radiatorashutter position. An impulsive change 2 
N 

E2 
in e,, at t = 0 is allowed. The solution to Equation (28) subject to these boundary 

conditions ie 
1 

where 

1 - E,, 
z =  
i 4c21 

For the special case 4 k E 2 
(29) has a singularity, the solution is 

= 1, 'where the solution given by Equation 

N N - -t -t 
z = z - k (G# - 1) t e - (zf - zi) e f 

The condenser pressure is given by 

. T2d 

The pressure drop across  the nozzle is 

This relation is easily evaluated from the forgoing equations. 

The variation in liquid flow rate  with time can now be computed. Normalize 

the flow rate equation on the design boiler pressure p Then Id. - 
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where - p1 - p2 mn - 
'ld 

C is the design liquid frictional coefficient, and C is a modified friction coeffi- 

cient due to, for example, a partially closed valve. 

The pump pressure rise is assumed fixed, BO 

fd f 

1 1 - 

where is a function of time. 

This completes the system of equations required to give the properties of 

the model. Two specific examples have been computed to demonstrate the manner 

in which the variables change with time, assuming an impulsive change in the para- 

meters q and C2 at t = 0. 

electrical input and the condenser shutter position are changed to give a final nozzle 

pressure drop identical to that which existed at the beginning. Thus the initial and 

final liquid flow rates will also be identical. 

n 

h) 

The specific examples are ones in which both the 
e 

First Example 
- 

'e - 'ed Initially 

finally qe = 1.05q ed 

c2 = 0.959 
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Second Example 
- 

'e - 'ed Initially 

- c2 = 1 

Finally qe = l . l l q  

E2 = .90 

ed 

Numerical values which were used to make the calculations are 

= 7.65atm = 112.3psf 

= 1.67 atm = 24.5 psi 

'ld . 

'2d 

Tld = 2360"R 

T2d = 1960'R 

Tu  = 2460"R 

TA =. 315°F 

! 

TB = 220'F 

cu = 4 . 6 ~ t d " ~  

5 
= 30 kw = 1.025 x 10 B t d h r  

'ed 

hA = 1.023 x 10 B tdhr 'F  
3 

T = 16.2 sec 

C = 3 . 5 8 B W " F  
1 

C 

T = 246 sec 2 

h = 8 5 0 B t d l b  
f g  1 - 

2 2 
= 52.1 lbm in /lbf h r  (OR) 

c1 
-9 4 

= 6.93 x 10 BWhr'R 
'2d 

'. 

The effective time constant of the lithium loop-boiler-nozzle system is 67.2 sec. 

Graphs of the variables for example 1, are shown in Figures 1 and 2. Graphs of 

the variables for example 2, a r e  shown in Figures 3 and 4. 
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Calculation of Liquid Flow Rate for the  Examples 

In the calculations for steady state pressure drop as presented in  

Reference (l), it was shown that 

= 0.8 psi 2 c w  
fd M 

so that in the present model 

= 0 .8ps i  &pd - dP,d 

In the dimensionless sytem, 

- 2  @p 4, 
Ld 'ld 'ld 

= -  - -  W 

.72 x 

Excursions from the design flow rate a r e  given by 

r 

(35) 

- 
i 

I 

, 
I Since the pump pressure rise is fixed, the function in the brackets on the right hand 

side of this equation is plotted for the two examples in Figures 2 and 4. Notice that , 

it is a positive quantity, and that therefore e W 2  > Cf V 2. Thus the flow rate ~ 

fd Ld 
decreases during the pressure surge. Notice also, that if C = 1, so that the 

design liquid friction coefficient applies, that the magnitude of pressure surge i s  

greater than the design value of (Equation (35)) so that the flow reverses. 

The model breaks down under such conditions. 

f 

2 W 
f L  

Once concludes that if this model applies, that even quite moderate ex- 

cursions from the design power output will cause large excursions in liquid flow 

rate and boiler exit quality. A simple cure for the possible flow reversals would be 

to increase the liquid friction coefficient, so that the liquid pressure drop exceeds 

the design value. The pump pressure r ise  will  thus be larger, but the quantity 

(pl - p ) will remain the same since it is controlled solely by the temperature levels. 
2 

This statement may be justified a$ follows: 



In Equation (33), @ may be found for any value of P f 
, such that 

2 
4 I p  = 4 T d  + c' iv 

f Ld 

then one can wri te  

or since 

then by substitution and rearrangement 

It has already been shown that for power increases, 

The numerator on the right hand side of Equation (36) does not depend on Cf, so 

there is always a large enough that (w /w ) be greater than zero. In fact, 
2 

f L Ld 
within the limitations of the pump pressure rise, the flow rate can be made a8 

close to constant as desired by increasing E to a value much larger  than unity. 

The flow rate variation for the two examples has been plotted in Figure 5, using a 

value of E of 10. 

f 

f 

Discuss ion 

There a r e  several obvious weaknesses in this model. One is the com- 

plete lack of coupling from the condenser to the boiler. Since the heat transfer in 

the boiler and flow rate through the nozzle a r e  both considered to be independent 

of the liquid flow rate, no change in the condenser affects the boiler temperature8 

or pressures.  This is unrealistic for  operating conditions where the quality in the 

boiler is high enough that the heat transfer coefficient has begun to decrease. At 



I 

I- 

' 0  
0 
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fairly low qualities this approximation should be fair, and one would expect this 

model to represent the actual case performance of the system at least qualitatively 

in the low quality region. Certainly there is little doubt that flow transients will 

occur. The transients exhibited by this model are not violent; the thermal time 

constants of the system model are too long to generate violent transients. 

. 
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1 ,. Nomenclature 

A 

C 
C 

cf 

cf 

‘Li 

c1 

c2 

e 

h 

h 
f I3 

k 

ML 

p1 

p1 

p2 

p2 

‘e 

- 

- 

Q 

r 

S 

Boiler heat transfer area 

heat capacity of condenser assembly 

liquid friction coefficient 

c4cfa 
heat capacity of lithium circuit assembly 

nozzle discharge coefficient 

lumped radiation constant of condenser 

‘2IC2d 

base of natural logarithms 

boiler heat transfer coefficient 

latent heat of vaporization of potassium 

mass of liquid in system 

boiler absolute pressure 

‘1”ld 

condenser ablsolute pressure 

‘21P2d 

electrical power input to lithium heater . 
dimensionless electrical power input q /T hA e Id 

TldT* .-. 
=ld% 

. .  

t time 



f 
A t 

h) 

t 

TA, 

B T 

- 
TLi 

=1 

T1 

T2 

T2 

- 

- 

L 

g 

L 

V 

W 

W 

X 

Y 

z 

. .. - 

% 
t /T2 

; 
i 
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I 

proportionality constant in Equation (13) 

proportionality constant in Equation (14) 
- ------__- 

lithium temperature 
I 

~ 

TLi/TLid 

boiler temperature (potassium temperature) 

T1/Tld 

condenser temperature 

T2’T2d 

liquid velocity 

mass flow rate of gas 

mass flow rate of liquid (flow rate through pump) 

Tl - 1 
- 
T u - l .  

T2 - 1 
- 

Subscripts 

d design point 

f <  final state (t =w) 

i initial state (t 4 0) 

Greek symbols 

pump pressure rise 
‘‘P 

, . _  
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4 n  

ad 

1 

2 

7 

7 

p1 - p,., the nozzle pressure drop 

TLid - 'Id 

%i/" 
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V-B. TRANSIENT ANALYSIS O F  A SIMPLE MODEL OF THE JPL BOILING 

POTASSIUM POWER SYSTEM WITH A CHOKED NOZZLE AND 

VARIABLE HEAT TRANSFER CONDUCTANCE 

I 
A previous simple analysis of the JPL Boiling Potassium Power System 

(Reference 1) indicated that rather large flow rate variations could occur with 

small changes in the controlled parameters. The analysis of Reference 1 was 

carried out with the idealization of constant boiler heat transfer conductance, 

which allowed the boiler and condenser to be analysed separately. It is known, 

however, that under some circumstances boiling heat transfer conductances are 

strong functions of the vapor quality in the boiler, and one would expect that the 

large predicted flow rate variations and resultant quality variation indicated by 

the analysis of Reference 1 would affect the heat transfer coefficient. The possi- 

bility of positive feedback from condenser to boiler exists, since an increase in 

I 
power causes a decrease in flow rate and a resulting increase in quality (or de- 

crease in conductance). If the proper time relationship between these effects 

existed, flow oscillations would occur. The model has therefore been analysed 

for the case in which the heat transfer conductance is variable. I 

The system model considered in this analysis is identical to that of 

Reference 1, with the exception that the heat transfer conductance varies accord- 

ing to a simple analytic model. Although the modification to the model is minor, 

considerable complexity is added to the mathematics since the boiler and con- 

denser are now coupled through the liquid flow rate, which affects the heat 

I 

transfer conductance. 



The Heat Transfer Coefficient Model 

A number of sets of boiling potassium heat transfer coefficient data show 

the logarithm of the heat transfer coefficient to decrease approximately linearly 

from the liquid value at  a quality of zero, to the gaseous value at a quality of one. 

. Figure 1, which was taken from Reference 2, shows this variation. In agreement 

with these experimental data, the model heat transfer coefficient used in the pre- 

sent analysis is assumed to have a linear variation in semilog coordinates. This 

I 

. I  

leads to the following expression for the heat transfer coefficient; 

i where X is the vapor quality 

h is the value of h for fully established flow at X = 1 

h is the value of h for fully established flow at X = 0 

g 

L 

The quantity h in Equation (1) is the heat transfer coefficient at X, and is therefore 

a wlocaln value. 

l 

The average heat transfer coefficient, zero to X, is given by 

where h is the average value for the entire boiler, and X is the exit quality. 

For convenience in the following problem synthesis, the average h will be referred 

to the final steady state value attained at t = a, after a given perturbation, 
1 

The perturbation will be assumed small, so that , 

Xf - x e< Xf. i 

Then h may be written*approximately a8 
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where 

quality is greater than the initial quality, E is negative, and decreases to zero as 

time increases. 

is the (small) perturbation i n  X from the final value X When the final 
f '  

2 
These constants are: h = 67 Btu/hr ft OF 

g 
= 8 0 0 0 B w h r f t  2 OF 

hL 

The design average heat transfer coefficient, from Equation (3) is 

2 
= 1 9 2 0 B w h r f t  OF hd 

at Xd = Xf = 0.85 

to simplify notation, define 

so that € 
1 + b -  

xf 
E 1 + -  

xf 

Equation (4) may be linearized, neglecting terms in c2 and higher. Thus 
. I  

(4) 

where 

(5) 
- E 
h = 1 - (1 - b)- 

xf 

L 

and the approximation has been made that 
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- 
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- 

I 

- 
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2 -  - 
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IO - 
8 -  
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- - 

6 -  
- - - - 

4 -  - 
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! 

! 
' j  
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The remaining equations, taken from Reference 1, are: 

Lithium circuit-boiler assembly 

dT 
Li 

'Li dt + hA crLi - T1) = Qe 

Potassium side of boiler 

I 

hA (TLi - T1) = w h 
g fg 

Turbine nozzle 

I 
w =cl- 

T.= 
g 1 

A 

Condenser 

-- c2 4 
C dT2 

C + -  T2 = W  
h dt g 

I 

f g fg 

&P = constant 
Momentum' equation 

2 
d p p = P 1 - P  2 + c w  f L  

where, as before, w is the total flow rate. 
L 

The vapor pressure-temperature relationship is given by two relationships 

Equation (13) and (14) of Reference 1. 

In Reference 1, the quantities x, y, and z, the potassium temperature in 

the boiler, the lithium temperature, and the condenser temperature variables 

respectively, were used. These a r e  not small quantities in the strict sense, since 

the initial condition may be displaced from the design condition by the radiator 

shutter position or other parameters. Since it will be necessary to linearize all 

equations to obtain a solution in the present problem, the variables must be made 

truly small. The working variables will therefore be changed to 
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x = x - x  
1 f 

y f Y1 = Y  - 

f z = z - z  1 

with the restrictions that 

x - x  < < 1  
i f 

Yi - y << 1 f 

z ’ -  z << 1 
i f 

The subscripts i & f denote the initial and final states. In this notation, the linear 

boiler and condenser pressure-temperature relationships are 

and 

m 

m 

c 

I 

. !  
i 

, 
, 

! 

I 

W 

i 

. .  

- I  
! 

i 
I 
I As ,,efore, the governing equations a r e  normadzed on the design condition. In the 

new notation, the system governing equations are as follows. Lithium circuit-boiler I 

assembly temperature equation: I 

e 



E - xl) = Q (1 - b) - hf dY1 - + -  
xf di hd '1 

Vapor generation in the boiler: 

Gas flow rate through the nozzle: 

1 - - 
g gf gf 1 2(1 + x J X 1  f E - w  = 7  [ a  

Condenser temperature: 

Compatible steady state relations are: 
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(9) 

The quantities E and x may be eliminated between these equations to yield a pair of 
1 

simultaneous linear differential equations in  y and z This proceeds as follows: 1 1' 
From the definition of X and E ,  it may be shown that to first order in  the 

flow rate perturbations, (which a r e  of the same order as E) 

r 

L where lV is- 
L w  

Ld 
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- if - wgf 
The quantity g- may be taken directly from Equation (11). The liquid flow 

W 
gf 

rate disturbance must be computed. From the momentum equation, 

Since the pump pressure rise is fixed for t > 0, 

2 + c w  
p2f Lf 

4 p = P  - 
lf  

so that Equation (15) becomes 

- P,) - - (p l f  - pl) - (p2f 
+ 1 -  

2. c w  (+) 4 
BY introduction of the pres sure temperature 

'2d 
1 1  p, 2 1 

- a x  +-a z 

relationships, 

+ 1  

This is of the order of unity plus a small perturbation so that 

a z  - a x  
- p2d 

2 1  1 1  

2 
Pld 

W 

W 

L . 
- - l +  

Lf 

Then in the first order approximation 

one obtains 

, 
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where F is the equilibrium liquid friction pressure drop, given by 

P 
- 'd 

By combination of Equations (lo), (ll), (14), and (16), a relationship for x in 

terms of y and z results. This is 
1 

1 1 

where the notation is 

b,. = (1 - b) 

hf - -  - 
. b2 hd 

1 2(1 + Xf) a -  
b3 = [ 

2 a - -  - p2d - 
b4 P, F 

b6 = 1 b 2 s + G gf[ b3 + bl (b3 + b5)] 
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The perturbation in  boiler exit quality is given by 

The relationships (17) and (18) may be introduced into the lithium circuit Equation (9), 

and rearranged to yield 

d Y l  ,=- 
dt Qs 

b2 b3 - 
b6 

Relationships (11) and (17) may be introduced into the condenser temperature rela- 

tionship Equation (12) and rearranged to yield 

1 
dz 

dt 
- -  - -  

where 
1 

2 

7 
- -  - 

b7 7 

z +  1 

2 
b2 b3 b7 8 

b6 

Equations (19) and (20) represent a pair of similtaneous linear first order differential 

equations for  y and z 

initial conditions are 

t = O  

The final conditions by definition are y = z = 0 and the 
1 1' 1 1 1  

- 
Y1 - - Yi - Yf 

f 
z = z . - z  
1 1 

These equations contain four controllable parameters, corresponding to the four 

system controls, these are: electrical power to the lithium, throttling of potassium 

flow at the outlet of the pump, pump pressure rise, and radiator shutter position. 

Equations (19) and (20) are of the form 

1 -- dY1 dx - Ay + Bzl 
1 
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The solution of such a set as (21) is accomplished by assuming solutions of the form 

(see for example Reference 3) 
I 

(22) I A t  y1 = a e  

z = B e  A t  
1 

These a r e  substituted into the differential equations and the exponential terms are 

cancelled to yield two simultaneous algebraic equations for (Y and p. These algebraic 

equations are: 

It can be shown that non-trivial solutions for LY and p exist only when the determinant 

of their coefficients is zero, and this leads to the characteristic equation for the 

present problem 

(24) h2 - (C + A ) A  + (AC - BD) = 0 

The time constants are thus 

o r  

Periodic solutions exist for the cases where these roots have imaginary components. 

The solutions a re  functions of four parameters; Ap 

impossible to present a function of four independent parameters in a compact manner, 

and no attempt at a complete presentation has been made. Instead, two specific 

- 
C2, 5, and qe. It is virtually 

P' 

examples, one containing oniy exponentials, and one containing periodic components 
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as well, have been worked out in order to show how the solutions are obtained. In 

both of these examples, the equilibrium (final) state coincides with the design power 

input and shutter position, and the pump pressure r i se  and friction pressure drop 

have been chosen so that the design liquid flow rate is also obtained at steady state. 

The two examples differ in that the first is for the design liquid friction coefficient 

and the second is for 10 times the liquid friction coefficient. The system constants 

are the same as those of Reference 1. Thus, 

TA = 315 "F 

TB = 220°F 

T = 2360"R 
'd 

T = 1960'R 
2d 

= 2460'R Lid 
T 

p = 7.65atm 
l d  

= 1.67 atm. 
p2d . 
s = 23.6 

1 

2 

7 

7 
- -  - 0.0658 
b = 0.075 
- 
c2 = 1 

Qd = 11s 

c w  2 
-2 

fd Ld = 0.72~10 
'Id 

L 
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c w = 1  
gf 

x = z f = o  f 

From the above conditions, the constants of the analysis common to both examples 

are 

a = 7 . 5  

a = 8.9 

1 

2 

- -  - 0.218 

"d 

= (1 -' b) = 0.925 
bl 

= 1  hf - -  - 
b2 hd 

= 7.0 
l l  

- 
'"3 = [a1 2(1 + x) f 

p2d a2 134.9 

"d 

- -  - - -  - 
5 b4 - F 

a-  
1 520 =, 

cf 
b5 = F 

b7 = 0.0658 

For the first example, in which E = 1: f 

b6 = 518 

. .  
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Qds = - 0.0135 
- b2 b3 A = -  

b6 

b l b 3  b4 2 
B = -  Q d~ = - 0.07145 

b6 
2 2  

c =  bi b3 b4 b7 Qd - 4 b7E2 = -0.1522 

b6 9 

b b b syQd 
= 0.021 2 3 7  D =  

b6 

The roots of the characteristic equation are  

Al = - 0.0253 

A2 = - 0.1404 

Both roots a re  real and negative, so the system is definitely stable. The solution 

is therefore 

The constants (Y 1, cy2, Pl, p2, a re  evaluated from the initial conditons. A t  f = 0 ,  

= ( Y A  + ( Y A  1 1  2 2  

z is zero, since that is the design point. f 
.I I - -  Yf = Yd - 

The system starts from an equilibrium state before the disturbance is imposed at 
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- 
t = 0. From the equilibrium relationships, Equation (13),and making the approxi- 

mation that the disturbance is very small, so that  h /h ks 1, i d  

= Qi + X. 'i 1 

1 
i 4 i  

From Equation (17), 

z = - ( Q s  - 1) 

(Zi - 0) 
1 bl b4 

oTi - ;) + 
b2s x. =- 
b6 b6 

[Qis - i] 

= 0.0651 (Q.s - 1) 
1 

Also  

1 yi - yf = Qi - - + X. 
S 1 

= 0.1075 (Q.s - 1) 
1 

From these relationships, 

Cy = -  0.034 (Q.s - 1) 1 1 

Cy = + 0.141 (Q.s -. 1) 2 1 

By the same process, 

P1 = - 0.007 (Q.s - 1) 

P = + 0.257 (Q.s * -  1) 

1 

2 1 

The solutions may therefore be written 

- (0.025)T -(0.140F = - (0.034) e + (0.141) e Y1 
(Qis - 1) 
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. .  .: 

From Equations (16) and (17), the liquid flow rate may be written, 

w - w  
b2 b5 

W Lf = b 4 ( - y ) z  1 - Y 1  

L 

b6 
Lf 

= 9 . 1 2  - 2 3 . 7 ~  
1 1 

so that 
w - w  

-0.026t' -0.1401 (28) - (.9202) e Lf . 
L 1 

= + (.7407) e (Qis - 1) W 

Lf 

The initial displacement of the flow rate from the design value is 

w - w  

= - (.1795) (Qis - 1) 
Li Lf 

Lf 
W 

If the initial state is above the design value the liquid flow rate is below the 

design value. w - w  

from Equations Lf L 
Graphs of the time histories of y z and 1' 1 

(27) and (28) are shown in Figure 2. 

For  the second example, in which 

b4 = 13.49 

b5 = 52.08 

b6 = 85.1 

= 10, f 

and 
A = - 0.08225 

B = - 0.04349 

C = - 0.1957 
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D = - 0.1277 
These constants yield the roots 

A = - (0.13895) 
1.2 

2 (0.04837) i 
I 

= y t i v  (29) 

The roots are complex, so that the solution will  be a combination of exponential 

and periodic functions. Thus 
I 

(30) I = e’’ (cy cos v~ + cy s in  v t, Y 1  1 2 

7’ (P, cos v ;  + p sin v Z) z = e  
2 1 

The constants cy 1, cy2, p,, D2, are evaluated from the initial conditions as in the pre- 

ceeding example. The initial values in  this case are 
-.. 

X. 1 = (0.0668) (Q.s 1 - 1) 
Y i  - yf = (0.109) (Qis - 1) 

i - 2 f = (0.250) (Qis - 1) 
. The constants are therefore 

Cy = (- 0.097) (Q.s - 1) 
0, = (0.250) (Q.s - 1) 
2 1 

1 .  

Pz = - (0.00527) (Q.s - 1) 
1 

The solutions are 

, 

= e  -(O. 139)1 [(0.109) cos (0.0484); - (0.097) sin (0.0484fiI 
Y1 

(Qis - 1) 

= e  [(0.250) cos (0.0484)t - (0.0053) sin 
1 2 

(Qis - 1) 
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The liquid flow rate varies as 

w - w  

1 = 5 . 8 5 ~  - 14.4~ Ld L 

W 1 
Ld 

(32) 
w - w  

-(0'139)1 [- 0.11 cos (0.0484fi + 1.38 sin 
Ld 

Ld 

L 1 
(Qis - 1) W = e  

The initial displacement of the flow rate  from the design value is therefore 

w - w  

= (- 0.11) (Qis - 1) Li Ld 

Ld 
W 

and (w - w )/w as  functions of time from Equations (31) and 
1' zl' Ld Ld 

Graphs of y 

(32) are shown in Figure 2. 
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Conclusions 

The interaction of the condenser with the boiler is evident from Figure 2 

and Equations (26) and (31), since the lithium temperature-time history is now a 

Sliiii of two exponentials rather than the simple solution of Reference 1. The flow 

rate shows essentially the same characteristic "surge 

was indicated in Reference 1. 

during the transient as 

1 
Periodic terms appear in the solution example two, showing that flow 

oscillations can indeed occur. . In the case cited this conclusion is probably academic, 

since the damping is very large and the overshoot of both the temperatures and the 

flow rate is negligible. It may well be, however, that different combinations of the 

four free constants lead to cases in  which the damping is not large compared to the 

period of the oscillatory terms.  Specific interesting cases would have to be computed 

to test the possiblity of significant oscillations. 
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Nomenclature 

A 

A 

a 

a2 

1 

B 

b 

bl 

b2 

b3 

b4 

b5 

b6 

b7 

cf 

cf 

Li  

c1 

c2 

E2 

C 

- 

C 
C 

D 

boiler heat transfer area 

constant in Equation (21) 

constant in Equation (7) 

constant in Equation (8) 

constant in Equation (21) 

constant in Equation (4) 

1 - b  

hr/hd 

kl - 2 ( 1 L f ) ]  

constant in Equation (21) 

liquid friction coefficient for potassium loop 

'('fd 

lumped lithium circuit-boiler heat capacity 

constant in the turbine nozzle flow equation 

lumped condenser heat capacity 

radiation heat transfer constant 

dimensionless radiation heat transfer constant, a controlled parameter 

.. 

constant in Equation (21) 



._--~ . . 

F 

h 

h 
g 

hL - 
h 

h 

i 

fg 

p1 

p2 

p1 

p2 

- 
- 

Q 

‘e 

S 

t 

t 
- 

T1 

T2 

TLi 

T1 

T2 

- 
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average heat transfer conductance i n  boiler 

heat transfer conductance in boiler for X = 1 

heat transfer conductance in boiler for X = 0 

h/hf 

latent heat of vaporization of potassium 

potassium vapor pressure in boiler 

potassium vapor pressure in condenser 

’1”ld 

’2”2d 

dimensionless electrical power input q /(T e l d  hdA) 

electrical power input to lithium 

Tld  

Lid Id T - T  

time +. , 

t/T1 

potassium temperature in boiler 

potassium temperature in condenser 

lithium temperature 

,,i 



e-=---?- -- - . - --C,TC .___. . _.__ .--.-*- __*._- - ,-,_ l _ _  *.-. . - _I.. . >- . - 

- 
TLi 

TA 

T13 

W 
g 

g 

L 

L 

- 
W 

W 

- 
W 

X 

X 

1 
X 

Y 

y1 

z 

Z 
1 
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LilT I d  

proportionality constant in Equation (7) 

proportionality constant in Equation (8) 

vapor flow rate out of boiler 

w8wgd  

total mass  flow rate of potassium (liquid flow into boiler) 

Greek Symbols 

cy 

/? 
Y 

@P 

E 

A 

V 

1 
7 

solution coefficients (Equation (22)) I 
real part  crf A 

pump pressure rise 

small perturbation in  boiler exit quality 

system time constants (Equation (24)) 

imaginary part of h 

cLi/hd A 
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3 
2 cc'(c2d T2d 
7 

Subscripts 

d 

f 

i 

design condition 

equilibrium condition at t = 

initial condition at t = 0 

95 
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V-C. TRANSIENT HEAT TRANSFER MODEL O F  THE JPL  

BOILER-CONDENSER SYSTEM H A m T G  THERMAL COUPLING 

Introduction 

The calculation of the individual time constants of the boiler and condenser 

of the JPL power system indicates which component controls in transient perfor- 

mance. However, it is of interest to derive equations which define the transient. 

behavior of a coupled boiler-condenser system. The present analysis is based 

on the following postulates: 

Idealized System 

1. 

2, 

3 .  

4. 

5 .  

6 .  

Eeat rate addition to the boiler is constant 

A mean, constant potassium heat transfer resistance exists in 

the boiler 

The heat addition to the boiling, circulating potassium in the 

boiler is transferred to the condenser where the heat is stored 

af, I lost by radiation (no heat is lost from the ducts between 

the boiler and condenser) 

The controlling heat transfer resistance in the condenser is the 

radiation resistance (i. e. the temperature drops across the 

condensate layer and the metal walls are small and negligible 

compared to the radiation temperature drop) 

The constant head or pressure rise developed by the pump is 

all lost across  an adiabatic flow restriction between the boiler 

and condenser 

A t  time equal to zero the system temperatures are constant. 

Suddenly, the thermal resistance of the condenser is changed from - 

R t O R .  
C 

cO 



Derivation 

The following equations define the coupled boiler-condenser system. A 

heat rate balance on the boiler yields, 

A similar heat rate balance on the condenser is, 

. 
The total constant head o r  pressure rise developed by the pump is simply related 

to the vapor pressures in the boiler and condenser, 

From a linearized vapor pressure-temperature expression (i.e. &! = a), and the 

postulate that p - 
dt 

, Equation (3) can be expressed as, - pc 
C 

f 

Upon substituting Equation (4) into Equations (1) and (2) one obtains two simultaneous 

equations in two unknowns (namely t and t ), 
b C 



98 

C 
dt t 

-‘cdB R 
C +- - C 

t -  
b a 

5J . c  

The solution of this system is accomplished by 1) adding these two equations, 2 )  

solving for t from Equation (5) and then differentiating t with respect to 8 and 
C C 

3) substituting t and dt /de into the sum of Equations (5) and (6). 
C C 

The resulting equation is, 

where 

i 

dt 
b d2 tb 

+ K -  p =- 

do2 1 d0 + K2tb 

‘b% c + c  +- b C R 
C - 

‘c ‘b % K1 - 

1 - - 
K2 CcCbRc% 

The solution of Equation (7) is, . 

where constants C and C . are to be determined. 
1 2 
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- 

The boundary value problem is defined by the following initial conditions: 

4 At 8 = 0, 

(9) tb =s(% + R c )  + P a = $  
0 0 

t = q R c  = t  
C C 

0 0 

Upon substituting Equations (9), (lo), and (11) into the solution for t and its deriva- b 

The solut,m t can be found in the same manner as  the outline given above for 
C 

the solution for . k 
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Typical Problem and Concluding Remarks 

This transient analysis was applied to the JPL boiler-condenser system 

using the following representative system parameters including a 25 percent 

sudden increase in radiator resistance: 

h r  F/Btu 

R = 1.2  x 10 hr"F/Btu 

R = 1 .5  x 1 0  h r  'F/Btu (25% change in R ) 
C C 

'b 

C = 7.56Btu/"F 

q = 1.02 x 10 Btu/hr 

4 2 

-3 % = 2 . 0 x l O  

-2 
C 
.o 

-2 

0 
= 0.126 Bty/OF 

C 

5 

Ap = 1 . 2 6 ~  10 lb/ft 
P 

2 a = 31.7 lb/ft O F  

The results for this illustrative problem are shown in Figure 1. 

Further extensions of the above transient thermal analysis can be made. Fo r  

example, the boiler can be represented by two heat exchangers, the first of which 

has a low the+mal resistance (representing nucleate boiling) and the second one having 

S hi$ tkrzzsl resistacce (rqreseztiag f i l x  boiling). Thjs luzqed parfineter nethod 

of represeatation can also b e  used to evaluate non linear problems. 

, 
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Nomenclature 

a 

‘b 

C 

q 

C 

pf 

pf 

5 3  

b 

C 

C 
R 

t b 

tfb 

t 
C 

f 
t 

C 

e 

@P 

the vapor pressure derivative with respect to temperature (a constant) 

thermal capacity of the boiler 

tiiermal capacity of the condenser 

constant heat rate addition to the boiler 

vapor pressure in the boiler 

vapor pressure in  the condenser 

mean potassium heat transfer resistance in the boiler 

mean radiation heat transfer resistance for the condenser (radiator) 

boiler temperature above the environment temperature 

mean potassium temperature above the environment temperature in the boiler 

condenser temperature above the environment temperature 

mean potassium temperature above the environment temperature in the 
condenser 

time 

constant pressure r ise  generated by the pump 
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V-D. TRANSEN' ANALYSIS OF A SIMPLE MODEL OF THE JPL 

conductance is taken to be identical to that of Reference 2. 

In the choked nozzle cases considered in References 1 and 2 the condenser 

could affect the boiler only by changing the liquid flow rate through the pump, the 

pump pressure rise being constant. In the unchoked nozzle case the gaseous flow 

through the nozzle is also affected by condenser conditions, since the back pressure 

provided by the condenser appears in the nozzle flow expression. Thus both of the 

present solutions will follow the form of Reference 2 ,  since both pertain to coupled 

systems. 

Datum State Considerations 

The design operating point for the power system has no significance in the 

present case, since a pressure ratio p /p anywhere near design would choke the 

nozzle. Therefore, although the samt? general notation will be used here as was 
1 2  

? used in the two analyses of Model 1, the subscript d will now apply to an arbitrary 

datum operating level, rather than to the design operating point. The only restric- 

tion on the datum state is that the pressure ratio across  the nozzle must be less 

than critical. The analysis will be carried out for small perturbations about this 

operating point. Since the datum is arbitrary, no loss of generality is incurred by 

assuming the datum and final states to coincide. 

Analytic Expression for the Nozzle Flow 

The vapor phase flow rate through the nozzle, which is assumed to control 
8 

the pressure drop, as before, is given by 

\ 
w = p  A V  (1) n n  g gn 

BOILING POTASSIUM POWER SYSTEM WITH AN UNCHOKED NOZZLE (Model 2) 

Introduction 

This study pertains to a system identical to the system of Reference 1 

except that the nozzle pressure drop for a n  unchoked nozzle now applies. Two 

cases are considered; the case of constant boiling heat transfer conductance, 

and the case of variable heat transfer conductance. The variable heat transfer 

i 



104 

where the subscript n applies to the vena contracta. 

If the nozzle is adiabatic, then the velocity in the vena contracta is (see 

for example Reference 3 page 79) 
\ 

1 - 

a suming t h  

perature . 
21 ity at the exit of the boiler is negligibl 

(2) 

so that T . is a total tem- 
1 

If tixre is negligible pressure recovery downstream of the vena contracta 

(normally less than 10%) then 

T = T2 n 

where T is the condenser temperature as before. 
2 

The density of the gas in the vena contracta will be taken as 

p2 p = -  
gn RT2 

ti 

It has been found that a better f i t  to the vapor-pressure-temperature rela- 

ship than those used in References 1 and 2 may be obtained by the expression 

where p = 14.7 psia 
0 

T = 1850 OR 
0 

kl = 8.24  

This relationship is applicable within a few percent over the temperature range 

1850 "2 to 2550 OR. See Figure 1. Thus the boiler and condenser pressures may 

be written 

. .  
, 

- - k l  
P1 = TI 
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and 
- - kl p2 = T2 

The vapor.flow rate tLArough the nozzle, from Equations (l), (2), (3), (5), 

and (6) may be written 

L 

1 

1 

T2d -1' - 
T2 

- - 
Tl Tld 

The sarce small peTturbation notation as used before is introduced, in 

which 

x = T 1 - l  

f 

- 1  y = -  

x = x - x  
1 

TLi 

I d  'I 

Y1 = Y - Y f  

f 
z = z - z  
1 

but now, since ihe 'datum and final states coincide 

x = z  = 0 
f f  

Denote T /T by k In the small perturbation approximation, Equation (7) may 

be written I 

2d I d  2' 

- w - 1 ~ k  x + k  z 
g 3 1 -  4 1  

where k and k are given by 
3 4 

1 
k3=2(1 - k2) 



and all terms in x and z higher than the first order have been neglected. 
1 1 

Zquation (8) is the only new equation. The other equations describing the 

system transients are; Lithium-Loop Boiler assembly temperature: 

E 
= Q ( l  - b) - hf - dyl 

+ - (Y1 - xl) 
xf dt hd 

Vapor Generation in the Boiler: 

(9 1 

hf - - [l - (1 - b)-] E 

hd g @ xf 
- - = - 

Condenser Temperature : 

Boiler Exit Quality Variation: 

Liquid Flow Rate: 

w L - w  Lf = -  1 [If - '1) - 
'ld 

F Lf W 

In the present cases, by definition, 
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a t f  = = 1 _ -  and a s  before, Qd = yf - 

Equations (9) through (13) a r e  solved simcltaneously to yield the description of the 

system varizbles as a function of time. The solution procedure is as follows: 

where 

i) with the aid of the vapor pressure-temperature relationships, 

rewrite Equation (13)’ to yield 

2)  combine Xquations (8)’ (12), and (14) to yield 

E 

3) combine Equations (8 ) ,  (IO), ana (i5), solve for x to yield 
1’ 

x = k z  + k y  
1 5 1  6 1  

where 

4) by use of Equation (16), eliminate x from the Lithium circuit temperature 
1 
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equation. To accomplish this combine (9), ( lo ) ,  and (16). The 

result  may be written 

k k  + k 4  - 3 5  
1 Z = - -  k3 k6 - d Y l  

df s y1 S 

or  

5) Afte r  the same manner, combining Equations (8), (ll), and (16), 

the condenser temperature equation may be written 

or  

. I. 

dz 

df 1 
1 - -  

1 
- C Z  + D y  

Zquations (18) and (20) are identical to those given as Equation (21) of Reference 

2.  The appropriate initial conditions for the present case are t = 0, y = yi, 

z = z . These are two values slightly different from the Catum state and correspond 
i 

to some equilibrium conditions for t < 0; at which 1, Q 121 Q,, etc. The 

method of obtaining solutions to this equation system is identical to that given in  

Reference 2 and will not be repeated here. 

A s  stated previously, the two cases h = constant, and h = variable, are 

equivalent to (1 - b) = 0, and (1 - b) > 0,  respectively. 
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VI. SIMPLIFIED EQUATIONS WHICH DEFINE THE NUCLEAR REACTOR 

(LITHIUM HEATER) AND ?OWE3 SYSTEM COMPONENTS 

Introduction 

It is important to be able to define the transient nuclear-thermal coupling 

between the nuclear reactor and the various components of the power system. For 

example, it is desirable to be 2ble to predict the transient response of a nuclear 

reactor which supplies the power for aRankine cycle system when changes i n  turbo- 

alternator demand or  rzdiator heat tracsfer area a r e  imposed. 

General Equations 

The well kcown x s c t o r  kizetics equations which define the transient behavior 

of a nuclear reactor are 

dk P 
- - ep + EA. c d P  

d e  P i i  
- -  

i 

where P, sower 

8, time 

6k , prompt excess multiplication 
eP 

1 total neutron cycle time 

A decay constant of ith emitter 

C. modified concentration of ith emitter 

1 

1 

, effective multiplication factor e 

p . , fraction of delayed ceutrons of ith emitter 
1 
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The heat transfer equations that describe the remaining components of the power 

system are 

1. Fuel Elements 

wheTe P, fission heat flow rate 

(UA), (te - tr), coolant heat flow rate 

2. Reactor Coolant 

where (TJ.4) (t - t ), heat flow from fuel dements  to coolant 
r e  r 

C X  (t - t 
c i  co ), heat flow to the heat exchanger 

3 .  Primary Coolant Circuit (Lithium) 

dt C X ( t  - t o )  - UA (t - ts) 

d e  C 
- -  c i  . c  - C 

C 

where UA (t - t ), heat transfer to secondary circuit 
c s  

C X  (t - t ), net heat flow rate from reactor c i  co 

4. Secondary Coolant Circuit (Potassium) 

dt UA (t - ts) - P1 
d e  C 

C - S - -  
S 

where -3 turbine power 
1' 

UX (t - t ), heat exchanger heat flow 
c s  
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A l l  mean temperatures in the above eqcztfons are averages of inlet and outlet 

values. Finite flow times accounting for the fluids to flow from one 

component to another can be added in these equations for further refinement. 

The solutions of the above set of eqmtions must be accomplished numerically 

or  by analog methods. 

Specific Solutions 

A nxmber of spzciiic solutions of the transient reactor-power system 

can be found in the literzture. For exampk (3eference l), consider the case 

where the turbine power demand suddenly changes from P to P a new power 

level. F o r  this situation, the reactor coolznt would decrease in temperature at 

the rate 

0 1' 

The reactor power level would increase because of the negative temperature coef'ri- 

cient . Using a one delayed-neutron group mcdel, differentiating Equation (l),sub- 

stituting 7 from Equation (2) and C from %quaiion (l), yields dC 
C6 

ty, temperature coefficient 
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Equation (S) can be linearized and combined with Equation (7) yielding, 

1 d2P dP 
a d(A7)- d ( h )  p1 

9 k - + P =  - -  

U P  
0 where a = - P AC 

The solution of Equation (9), which can be used to estimate transient reactor 

power performance fo=. the sxbject boundary value problem, is 

. ar -- 
._ 2 a 

P = (2 - i-) e (cos ~3'r  + - sin LJ T )  
0 A 2d 

where T, is measu;-ed in ~ 1 : s  oi  ;he mean ddayed neutron 
I 2  2' 

LJ = l a - -  
\ 4  

Transfer Fuiicrion Method 

(9) 

t P  1 (10) 

lifetime and 

- 
A racsIent response of raclear reactor s y s t e r s  have successfully been 

anzlyzed usicg a steady state cetwork with sinusoidal driving functions. For  

exam-ple, the reactor can bz treated as a n  element in a control system and a trans- 

fer function a;splied to it, the transfer function being equal to the ratio of output 

t o  input for  a sinusoidal change in the multiplication constant 6k. Single and multi- 

group delayed neutron groups can be considered (Beference 2). The transfer func- 

tions are actually Laplace-tracsforms of the ratio of output to input functions. 

The various components of a nuclear power system can be represented by 

transfer f ac t ions  that are coupled together and the equivalent transfer function of 

the total system deduced. From this result, the amplitude of the output to input 

ratio 2cd the phase shift between t'ne output and input can be plotted as a function 

of exitation frequency. ,%Ability features can be obtained from these curves. Also, 

genezzl information on the absolute stability acd degree of stability can be inferred 

using t'ne amplitude 2nd phase lag results in a N y p i s t  diagram. Typical examples 

can be found in Reference 2. 
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VII. SYSTEM SIMULATION MODEL AND 

GOVXRNING EQUATIONS 

A siri,plified circcit for  the JPL power systern is shol in Fibwe 1. Suit- 

&le idealization's fo r  this circuit, which a re  not as restrictive a s  Models 1 and 2 

of sections IV and V a r e  as follows. 

1. Heat zddition only in preheater and lithium geater.' 

2: Keat removal only in  radizior and in shaft work of turbine. 

3 .  No heat generation in  electromagnetic pump. 

actually done by p a i p  can be luz-qed with the preheater 

if desired). 

(Heating 

4. L i p i d  friction is coneel3ated ir, the valve at the preheater 

outlet. 

5.  Lijcid level vt,-iztions r r e  fiegiigible. 

6 . Iasxa,- .AILLneous terrqerakre of ~3r:ii-c lithium circuit is uniform. 

7 .  Boiling 2rocess is constant p-essLre. 

8. Cor,clensztion process is constant pressure. 

9. lo tassium va2or is always less  A23 ;OO% quality. Thus, 

p = p(T) in  the mixed phase region. 

10. The fluid, piping, and insulation in the potassium loop outside 
L 

the boiler and rzdiator have negiisaie thermal storage capacity. 

11. Pressure and flow accommodation is instantaneous. Thus 

the flilid inertia is negligible. 

12. Variations in fluid mxss storage in different parts of the circuit are 

negligible. 

13. The potassium pump pressure rise is independent of liquid flow 

rate.  

14. Xixed ;;:lase pressure drops a r e  dependent upon the vapor 

phas2 only. 

- 
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15. ?reheating in t::~ boiler is r?egXgible. AI1 heat added in 

the boiler gces la to  vaporizing liquid. 

16. LiGGiS speccic heat is independeat of tem2erature. 

17. Ti-essure recovery from the fluid momentum in the 

ilozzle is negligible. 

1s. Potassium ~ 2 2 0 ~  irlay be represented by the equation of 

stctc of a pedec t  gas. 

~n t:ie acalyses of sectirns IV and V, iitzxx heater power, rzdiator shutter position, 

p x i p  pressure rise, v d v e  position, 2nd prekezt tem2erzhui.e were treated as con- 

trollable paraxeters ,  cocstznt i n  t h e .  h i y  o r  2l1 of these cuantities may instead 

be k-eated as time f ~ c t i ~ ~ ,  whose vzriation is spsci'ied by the operator. WiYn the 

L1 
= hA (T - T1) i C - 

'e Li Li at 

m i he ncxzim, caless otherwise defirad, is consiscerit with thak of section IV-A. 

T and T- 2re functions 0: L i a s .  The mean boiler heat 'e' Lis I 
i n  gmza l ,  

trailski. conductsnce ii is a funciion of boiler exit cplity. CLi is the Eeat capacity 

af the ectire lithium circait-boiler zssembly, azd may include iLe reactor as well, 

de?endir,g Gpon the location zt which q is defined. .. e 
rl-7 
I ne con2:enser governizg equation is 

X and h are the quality and latenx heat of va2orization at the entrance to the con- 
2 fg2 

denser. L" is a parametzic function of shutter position and is also a function of time 
2 

if finite-time ;;;otions of the shu-ars are consilered. C and C are based on the 
2 - c  

radiator area above the liquid level. w is the e x l z e  ~ 2 s s  flow rate. P - 



The pressure drop equation is 

2 
+ P1 - P2 p p P = c w  f P  

= c w  2 + c  w 2 + p n - p z  
f P  o g  

where C w is the liquid pressure drop 
f P  

o g  

n 

2 C w is the orifice pressure drop 

p is the pressure before the turbine nozzle 

ap , the pump pressure rise, can be a function of time. and 
P 

There a re  two alternative expressions for nozzle pressure drop, dependent upon ' 

whether the pressure ratio p /p is greater o r  smaller than critical (approxi- 
2 n  

mately 0.55). 
P, 

L For unchoked flow, - > 0.55, 
'n 

w = p g A V  g n n n  

P, 
1 

==- L A [2C (T - T2)] 
R T 2  n P n  (4) 

where T is the nozzle inlet temperature (downstream of the orifice) n 

A is the nozzle minimum area corrected for boundary layer effects if con- 

sidered. In the case in which the turboalternator is not in  the circuit, A n 

1' would be the orifice vena contracta area,  and T would be identically T 

n 

n 

< 0.55, p2 

p1 
For  choked flow, - 
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C can take on two values, dependent upon whether the orifice o r  turbine nozzle is 

the controlling restriction. 
1 

Turboalternator 

In section 111-C of Reference 1 it was shown that the time constant of the 

turboalternator of this power system is in the order of 3 seconds, which is at-least 

an order of magnitude less than the thermal time constants of the boiler-condenser 

system. The approximation may therefore be made that the inertia of the rotating 

machinery is negligible. If in addition the turbine is operating near design speed, 

then its thermal efficiency will  be nearly independent of the flow throughput. Its 

shaft power will  be approximately in  direct proportion to the flow throughput. The 

turboalternator may thus be replaced by 

= const (6) 
pT - 
W P 

fo r  the thermal analysis of the circuit. Since this  constant enthalpy change is in  the 

order of three percent of the maximum enthalpy difference around the potassium 

circuit, it was neglected altogether in the analyses of sections IV and V. 

Subcooling Portion of Radiator 

A number of approximations for the transient behavior of the pump temperature 

due to subcooling in  the radiator a r e  possible. One of these is given below, based on 

an averaged heat loss. This averaging has  no effect at all upon the transient beha- 

vior of the boiler-condenser portions of the circuit, since in  the system of idealizations 

the preheat power is exactly that required to bring the liquid to saturation at the 

entrance to theboiler. The pump temperature, if desired, can be computed after 

w and T a r e  determined from other considerations. The steady-state pump tem- 

perature is given by Equation (13) of section IV-B. 

. 

P 2 

C dT2 C dT 
c3 4 S + - - S 2 + w C T  - -  c3 T (7) 

2 dt 1 P - P  2 P 
w C T  + y T 2  + - - -  l P 2  2 dt 

where C the subcooler radiaticn constant, is a function of shutter position 
3' 
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T is the pump temperature 

C is the thermal capacity of the liquid-filled portion of the radiator 

P 

S 

w and T are time variables, but not unkowns in this equation. 
I 2 

Equation (7) is equivalent to 

where 9 , and Cp are known functions. 
1' QZ 3 

The preheater thermal equation is 
, 

The pump temperature T , and the preheat power are time variable. The preheat 
P 

I. power is not independently variable however, but depends upon T T , and w 
1, P 

C is the liquid specific heat. This equation and the subcooling relationship are 

unnecessary to the solution of the boiler-condenser transient behavior. 
P 

In addition to the preceding equations, there a r e  required the following 

expressions. 

w h = h A  (TLi - T1) (9 1 
g fg  

in which h 

to be evaluated at T . 
the latent heat of vaporization of potassium, is a function of T and is 

fg' 

1 

P = P m  (10) 

An acceptable working relationship for this function is given by Equation (4) of 

section V-D . 
h = h(X) (11) 

A reasonable estimate of this functional dependence is given by Equation (2) of 

section V-B. 
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The relationship between the vapor quality latent heat product in boiler 

and condenser, based on the stated idealizations, is 

P, 

The vapor flow rate at any point is of course 

I w = x w  
g 

An approximate working relationship for h , based information from Reference 2 

of this section is 
f g 

for T in  "F A = 1017 Bty/lb 

for  T in  "R A = 1071 Bty/lb 

B = 0.118 Bty/(lb"F) 

B = 0.118 Btd(1b"R) 

The system constants required for the preceding equations are tabulated below. 

the most part they a re  taken from other work reported in this document, and where 

applicable that work is cited. 

For  

Quantity 

Boiler area 

Lithium circuit-boiler heat capacity 

Condenser radiation constant 
(design point) 

Condenser heat capacity 

- Liquid friction coefficient 
(design point) 

Orifice pressure loss coefficient 
(unchoked) 

Turbine Nozzle Area (actual) 

Turbine Nozzle choked discharge 
coefficient 

Symbol 

A 

'Li 

c2 

C 
C 

cf 

0 
C 

An 

Value 
2 

.378 f t  

4 . 6  Btu/"F 

7 .36  
B t d  @r " R4) 

3 .18  B t d ' F  

-4 
. 3 6 x 1 0  . 

psi/ (lb/hr)2 

psi/ (lb/ h r ) 
.80 10-3 

0.023 in2 . 1 A - 
59 lb ,,R2 

h r  ps i  

Source 

section IV-B 

section V-A 

computed from data 
of section IV-B 

computed from data 
of sections IV-B & V-A 

section V-A 

section 11 B 
Reference 1 

section 11 F, Ref. 1 

section IV-A 
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Quantity Symbol Value Source 

32.5 Btu/lb computed from section 
III C of Reference 1 

computed from data of 

pT'wP 

c3 

Fluid enthalpy drop across turbine 

.915 x lo-' 
Btu/ (hr fi) section IV-B 

Subcooler radiation constant 
(design point) 

.396 Btu/"F 
6 

Subcooler heat capacity C computed from data of 
sections IV-B & V-A 
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